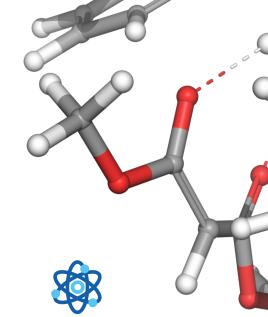
Nanoreactor

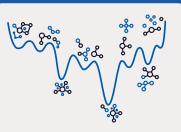
Automated potential energy surface (PES) sampling and sorting with extended tight-binding (xTB) and density functional theory (DFT)


Highlights

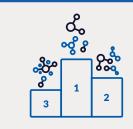
- Enhanced Nanoreactor with new features, expanding upon the tool developed by Grimme and co-workers¹, including improved energy refinement of results, sorting and integrated user interface
- Highly automated solution for indirect prediction of chemical degradation products

Use cases

- Identify intermediates and products for any chemical reaction
- Predict products for chemical degradation of small molecules
- Simulate thermal decomposition, oxidation, hydrolysis, and photodegradation
- Perform PES sampling (restricted to minima states)


Key methods

- Metadynamics
- Semiempirical GFN2-xTB extended tight binding quantum method
- Pseudospectral and composite DFT



Input (XYZ, SMILES)

- One or few molecules, ions, radicals
- Closed or open-shell system (conserves total spin)

Potential Energy Surface sampling and minima generation through GFN2-xTB metadynamics and optimization

Sorting

- GFN2-xTB Free Energies (default)
- DFT//GFN2-xTB Free Energies (optional)

Example: Hydrolysis of aspirin

Predict plausible degradation products of active pharmaceutical ingredients using xTB metadynamics. Optionally identify their thermodynamic sorting with free energy refinement.

Highlights

- Simulation results align well with experiments
- Can be performed on laptop-type compute resources

Input	Nanoreactor Panel	Output
	Nanoreactor Use structures from: Workspace (included entry) Charge: Unpaired electrons: O: Solvent: None Relaxation time: 100 Psi Cavity radius: Automatic Isiasing potential strength (kpush): Automatic Solvent: Solvent: Solvent: Solvent: Matematic Solvent: Solvent:	o acetic acid OH HO OH salycylic acid

Reference

1. Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations, Stefan Grimme, *J. Chem. Theory Comput.* 2019, 15, 5, 2847–2862.

Contact us: ms-sales@schrodinger.com **Learn more:** www.schrodinger.com/platform/products/ms-reactivity

Connect with an expert to learn more

Copyright © 2024 Schrödinger, Inc.